Guide for Module Developers — EnergyPlus 23.2

<< Prev | Table of Contents | Next >>

Data Flow in an HVAC Component Module[LINK]

The data in an EnergyPlus HVAC component module resides in three places.

1. The component inlet nodes – this is where the data input to the model resides.

2. The component internal data structure(s) – one or more arrays of data structures which contain all the data needed for the component simulation. This includes data from the input file, data from the inlet nodes, and any schedule values. In addition, these data structure(s) store the results of the calculation.

3. The component outlet nodes – data is moved from the internal data structure(s) to the outlet nodes at the completion of each component simulation.

The data flows from the inlet nodes into the component internal data structure(s) and then into the outlet nodes. Let us see how this works in our example module Fans.

At the start of the module, the component internal data structure is defined.

TYPE FanEquipConditions

CHARACTER(len = MaxNameLength) :: FanName ! Name of the fan

CHARACTER(len = MaxNameLength) :: FanType ! Type of Fan ie. Simple, Vane axial, Centrifugal, etc.

CHARACTER(len = MaxNameLength) :: Schedule ! Fan Operation Schedule

CHARACTER(len = MaxNameLength) :: Control ! ie. Const Vol, Variable Vol

Integer :: SchedPtr ! Pointer to the correct schedule

REAL(r64) :: InletAirMassFlowRate !MassFlow through the Fan being Simulated [kg/Sec]

REAL(r64) :: OutletAirMassFlowRate

REAL(r64) :: MaxAirFlowRate !Max Specified Volume Flow Rate of Fan [m^3/sec]

REAL(r64) :: MinAirFlowRate !Min Specified Volume Flow Rate of Fan [m^3/sec]

REAL(r64) :: MaxAirMassFlowRate ! Max flow rate of fan in kg/sec

REAL(r64) :: MinAirMassFlowRate ! Min flow rate of fan in kg/sec

REAL(r64) :: InletAirTemp

REAL(r64) :: OutletAirTemp

REAL(r64) :: InletAirHumRat

REAL(r64) :: OutletAirHumRat

REAL(r64) :: InletAirEnthalpy

REAL(r64) :: OutletAirEnthalpy

REAL(r64) :: FanPower !Power of the Fan being Simulated [kW]

REAL(r64) :: FanEnergy !Fan energy in [kJ]

REAL(r64) :: DeltaTemp !Temp Rise across the Fan [C]

REAL(r64) :: DeltaPress !Delta Pressure Across the Fan [N/M^2]

REAL(r64) :: FanEff !Fan total efficiency; motor and mechanical

REAL(r64) :: MotEff !Fan motor efficiency

REAL(r64) :: MotInAirFrac !Fraction of motor heat entering air stream

REAL(r64), Dimension(5):: FanCoeff !Fan Part Load Coefficients to match fan type

! Mass Flow Rate Control Variables

REAL(r64) :: MassFlowRateMaxAvail

REAL(r64) :: MassFlowRateMinAvail

INTEGER :: InletNodeNum

INTEGER :: OutletNodeNum END TYPE FanEquipConditions

!MODULE VARIABLE DECLARATIONS:

INTEGER :: NumFans ! The Number of Fans found in the Input

TYPE (FanEquipConditions), ALLOCATABLE, DIMENSION(:) :: Fan

In this case, there is only one structure that stores all of the fan data. We could have chosen to divide this rather large structure up into separate structures – one for input file data, one for inlet data, and one for outlet data, for instance. Note that in Fortran 90 structures are called defined type. The TYPE – END TYPE construct defines a new data structure. Then an allocatable array Fan of the defined type is created. This one-dimensional array will contain an entry for each fan in the problem.

The internal data array is allocated (sized) in the “GetInput” routine GetFanInput.

NumSimpFan = GetNumObjectsFound(‘FAN:SIMPLE:CONSTVOLUME’)

NumVarVolFan = GetNumObjectsFound(‘FAN:SIMPLE:VARIABLEVOLUME’)

NumOnOff = GetNumObjectsFound(‘FAN:SIMPLE:ONOFF’)

NumZoneExhFan = GetNumObjectsFound(‘ZONE EXHAUST FAN’)

NumFans = NumSimpFan + NumVarVolFan + NumZoneExhFan+NumOnOff

IF (NumFans.GT.0) ALLOCATE(Fan(NumFans))

The remainder of the “GetInput” routine moves input file data into the Fan array. The “Init” routine transfers data from the inlet nodes into the same array in preparation for performing the calculation.

! Load the node data in this section for the component simulation

!

!First need to make sure that the massflowrate is between the max and min avail.

IF (Fan(FanNum)%FanType_Num / = FanType_ZoneExhaust ) THEN

Fan(FanNum)%InletAirMassFlowRate = Min(Node(InletNode)%MassFlowRate, &

Fan(FanNum)%MassFlowRateMaxAvail)

Fan(FanNum)%InletAirMassFlowRate = Max(Fan(FanNum)%InletAirMassFlowRate, &

Fan(FanNum)%MassFlowRateMinAvail)

ELSE ! zone exhaust fans - always run at the max

Fan(FanNum)%MassFlowRateMaxAvail = Fan(FanNum)%MaxAirMassFlowRate

Fan(FanNum)%MassFlowRateMinAvail = 0.0

Fan(FanNum)%InletAirMassFlowRate = Fan(FanNum)%MassFlowRateMaxAvail

IF (Fan(FanNum)%EMSMaxMassFlowOverrideOn) Fan(FanNum)%InletAirMassFlowRate = &

MIN(Fan(FanNum)%EMSAirMassFlowValue,Fan(FanNum)%MassFlowRateMaxAvail)

END IF

!Then set the other conditions

Fan(FanNum)%InletAirTemp = Node(InletNode)%Temp

Fan(FanNum)%InletAirHumRat = Node(InletNode)%HumRat

Fan(FanNum)%InletAirEnthalpy = Node(InletNode)%Enthalpy

The “Calc” routines do the actual component simulation. All the data they need has been stored in the internal data array ready to be used. The results of the calculation are, in this case, stored in the same array. The “Calc” routine always does pure calculation/simulation – it never retrieves or stores data.

DeltaPress = Fan(FanNum)%DeltaPress

FanEff = Fan(FanNum)%FanEff

! For a Constant Volume Simple Fan the Max Flow Rate is the Flow Rate for the fan

Tin = Fan(FanNum)%InletAirTemp

Win = Fan(FanNum)%InletAirHumRat

RhoAir = Fan(FanNum)%RhoAirStdInit

MassFlow = MIN(Fan(FanNum)%InletAirMassFlowRate,Fan(FanNum)%MaxAirMassFlowRate)

MassFlow = MAX(MassFlow,Fan(FanNum)%MinAirMassFlowRate)

!

!Determine the Fan Schedule for the Time step

If( ( GetCurrentScheduleValue(Fan(FanNum)%SchedPtr)>0.0 .and. Massflow>0.0 .or. TurnFansOn .and. Massflow>0.0) &

.and. .NOT.TurnFansOff ) Then

!Fan is operating

Fan(FanNum)%FanPower = MassFlow*DeltaPress/(FanEff*RhoAir) ! total fan power

FanShaftPower = Fan(FanNum)%MotEff * Fan(FanNum)%FanPower ! power delivered to shaft

PowerLossToAir = FanShaftPower + (Fan(FanNum)%FanPower - FanShaftPower) * &

Fan(FanNum)%MotInAirFrac

Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy + PowerLossToAir/MassFlow

! This fan does not change the moisture or Mass Flow across the component

Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat

Fan(FanNum)%OutletAirMassFlowRate = MassFlow

Fan(FanNum)%OutletAirTemp = PsyTdbFnHW (Fan(FanNum)%OutletAirEnthalpy,Fan(FanNum)%OutletAirHumRat)

Else

!Fan is off and not operating no power consumed and mass flow rate.

Fan(FanNum)%FanPower = 0.0

FanShaftPower = 0.0

PowerLossToAir = 0.0

Fan(FanNum)%OutletAirMassFlowRate = 0.0

Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat

Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy

Fan(FanNum)%OutletAirTemp = Fan(FanNum)%InletAirTemp

! Set the Control Flow variables to 0.0 flow when OFF.

Fan(FanNum)%MassFlowRateMaxAvail = 0.0

Fan(FanNum)%MassFlowRateMinAvail = 0.0

End If

Finally, the “Update” routine (UpdateFan) moves the results from the internal data array into the outlet node(s).

OutletNode = Fan(FanNum)%OutletNodeNum

InletNode = Fan(FanNum)%InletNodeNum

! Set the outlet air nodes of the fan

Node(OutletNode)%MassFlowRate = Fan(FanNum)%OutletAirMassFlowRate

Node(OutletNode)%Temp = Fan(FanNum)%OutletAirTemp

Node(OutletNode)%HumRat = Fan(FanNum)%OutletAirHumRat

Node(OutletNode)%Enthalpy = Fan(FanNum)%OutletAirEnthalpy

! Set the outlet nodes for properties that just pass through & not used

Node(OutletNode)%Quality = Node(InletNode)%Quality

Node(OutletNode)%Press = Node(InletNode)%Press

! Set the Node Flow Control Variables from the Fan Control Variables

Node(OutletNode)%MassFlowRateMaxAvail = Fan(FanNum)%MassFlowRateMaxAvail

Node(OutletNode)%MassFlowRateMinAvail = Fan(FanNum)%MassFlowRateMinAvail

Certain data items must always be transferred from inlet nodes to outlet nodes even if the data item is unaltered by the component model. The data items that must be transferred are:

1. Temp

2. HumRat

3. Enthalpy

4. Press

5. MassFlowRate

6. MassFlowRateMaxAvail

7. MassFlowRateMinAvail