Engineering Reference — EnergyPlus 24.2

<< Prev | Table of Contents | Next >>

Environmental Impacts[LINK]

Typically when a new building technology is evaluated the energy performance of a baseline building is compared to the energy and life-cycle costs of alternatives to determine cost-effectiveness. But what if the lowest energy or life-cycle cost alternative is not the cleanest or lowest environmental impact? By calculating environmental impact, designers can compare alternatives not only in terms of their energy performance but also their environmental performance—working towards a more sustainable design (Liesen 1997; Stroot, Nemeth, and Fournier 1996). Environmental impacts are quantified, in part, by modeling the amount of emissions and in EnergyPlus this is done using the input objects “EnvironmentalImpactFactors,” “FuelFactors,” and “Output:EnvironmentalImpactFactors.”

Based on emissions factors entered by the user, EnergyPlus calculates the mass or volume of thirteen different pollutants: CO2 (carbon dioxide), CO (carbon monoxide), CH4 (methane), NOx (nitrogen oxides), N2O (nitrous oxide), SO2 (sulphur dioxide), PM (particulate matter), PM10 (particulate matter 10>PM10>2.5 microns), PM2.5 (particulate matter<2.5 microns), NH3 (ammonia), NMVOC (non-methane volatile organic compounds), Hg (mercury), and Pb (lead) as well as water consumed through evaporation in thermo- and hydro-electric generation and high- and low-level nuclear waste from nuclear electricity generation for on- and off-site energy production. Note that while these comprise the largest proportion of pollutants, more than one hundred other pollutants are emitted from fossil fuel combustion or electricity generation. Much of the information compiled here for fossil fuel combustion comes from AP-42 Compilation of Air Pollutant Emission Factors (EPA 1998a, 1998b, 1996). For more information on pollutants, see the U.S. Environmental Protection Agency (EPA) Clearinghouse for Inventories & Emission Factors (www.epa.gov/ttn/chief/efinformation.html).

EnergyPlus models energy performance of on-site fossil fuels and purchased electricity (generated from a variety of fuels including natural gas, oil, gasoline, diesel, coal, hydroelectric, nuclear, wind, solar power, and biomass). The energy performance calculated by EnergyPlus is converted into a mass or volume of pollutants emitted. From a baseline building, alternative energy and pollution saving technologies can be explored, and the energy savings and pollution reduction can be calculated. Figure 1 and Figure 2 illustrate a comparison of two buildings simulated using Chicago weather data in EnergyPlus and the calculated pollutant levels (based on U.S. national average pollutants) (Crawley 2003).

To calculate the mass or volume of each pollutant, consumption is multiplied by an emissions factor for each fuel (natural gas, electricity, fuel oil, diesel, or coal). In future versions, users will be able to schedule how the emissions factors by time of day, month, season and year. For electricity, the mix of generation fuel sources—whether utility, state or regional—is used to adjust the emission factors. If a user has emissions factors specific to the building site and equipment, these can be entered directly. There are no default emissions factors.

Types of Pollutants[LINK]

EPA categorizes pollutants as either Criteria Pollutants or Hazardous Pollutants. Criteria pollutants are the six substances for which EPA has set health-based standards, including carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM10 and PM2.5), ozone (O3), and lead (Pb). Because ozone is created in atmospheric photochemical reactions of volatile organic compounds, ammonia, and other substances rather than direct building-related energy emissions, we do not calculated ozone emissions in EnergyPlus. But we do include ozone precursors: methane (CH4), non-methane volatile organic compounds (NMVOC), and ammonia (NH3). Hazardous pollutants are substances that are known or suspected to cause serious health problems such as cancer. We include typical hazardous substances associated with energy production and use including lead (Pb) and mercury (Hg). We also include CO2 (carbon dioxide) since it is largest greenhouse gas in terms of impact.

Example Annual Atmospheric Pollutants and Water Consumption [fig:example-annual-atmospheric-pollutants]

Example Annual Atmospheric Pollutants and Water Consumption [fig:example-annual-atmospheric-pollutants]

Example Annual Total Carbon Equivalent for Major Greenhouse Gases [fig:example-annual-total-carbon-equivalent-for]

Example Annual Total Carbon Equivalent for Major Greenhouse Gases [fig:example-annual-total-carbon-equivalent-for]

Carbon Equivalent[LINK]

The Intergovernmental Panel on Climate Change has studied the effects on the relative radiative forcing effects of various greenhouse gases. This effect, called Global Warming Potential (GWP), is described in terms of the Carbon Equivalent of a particular greenhouse gas. This equivalent is based on a factor of 1.0 for carbon. This group of gases includes carbon dioxide (CO2), carbon monoxide, nitrous oxide, methane, halocarbon emission, hydrofluorocarbons (HFC), perfluorocarbons (PFC), and chlorofluorocarbons (CFC). For building energy use, the main gases of concern are carbon dioxide, carbon monoxide, methane, and nitrous oxide. Although carbon monoxide has a relatively short life, CO emissions into the atmosphere may have a significant impact on climate forcing due to chemical impact on CH4 lifetime, and tropospheric O3 and CO2 photochemical production normally reacts to produce carbon dioxide, but it can’t be ignored since it is produced in incomplete combustion and the carbon remains to interact as CO2 Yet there is no agreement on its carbon equivalent (IPCC 2001). The carbon equivalent of carbon dioxide, methane, and nitrous oxide are calculated and then multiplied by their GWP on a 100 year time frame. The Carbon Equivalents of the following gases have been determined and used in the program are shown in the following table.

Carbon Equivalents (IPCC 2001)
Gas Carbon Equivalent
NOx 80.7272
CH4 6.2727
CO2 0.2727

The resulting carbon equivalents by fuel type are shown in the output of the program along with the individual gas pollutants.

Fossil Fuel Emissions Factors[LINK]

Emission factors for on-site fossil fuel consumption are based on Section 1.4 Natural Gas Combustion in EPA (1998a) Table 2 shows the greenhouse gas and precursors and criteria pollutant emissions factors for natural gas. Similar emissions factors are shown for residual fuel oil (No. 4 and No. 6 fuel oil) [Table 3], distillates (No. 1 and No. 2 fuel oil) [Table 4], residential oil furnace [Table 5], LPG (butane and propane) [Table 6], gasoline and diesel [Table 7], and coal [Table 8] in the indicated tables. Note that a zero for a pollutant in the table may mean that no data were available, not that there are no emissions of that pollutant.

Emission Factors for Natural Gas
Pollutant Emission Factora (g/MJ)
Carbon Dioxide (CO2) 50.23439
Carbon Monoxide (CO) 3.51641E-02
Methane (CH4) 9.62826E-04
Nitrogen Oxides (NOx) 4.18620E-02
Nitrous Oxide (N2O)b 9.20964E-04
Sulphur Dioxide (SO2)c 2.51172E-04
Particulate Matter (PM)d 3.18151E-03
Particulate Matter (PM10)d 2.38613E-03
Particulate Matter (PM2.5)d 7.95378E-04
Ammonia (NH3) 0e
Volatile Organic Compounds (NMVOC) 2.30241E-03
Mercury (Hg) 1.08841E-07
Lead (Pb) 2.09310E-07
a: Based on data from Tables 1.4-1, 1.4.-2 and 1.4.4 in EPA (1998a),
Natural gas heat value of 1027 Btu/ft3 based on data for 2003 in
Table A-4 in DOE (2004).
b: Values shown are for uncontrolled burner. For controlled-low NO
burner, use 0.64 lb/106 ft3, 0.000627 lb/MMBtu, 0.0002679 g/MJ.
c: Based on 100% conversion of fuel sulfur to SO. Assumes sulfur content
is natural gas of 2,000 grains/106 ft3. The SO2 emission factor
can be converted to other natural gas sulfur contents by multiplying the
SO emission factor by the ratio of the site-specific sulfur content
(grains/106 ft3) to 2,000 grains/106 ft3.
d: PM is the sum of all particulate matter including PM10 and PM2.5. PM10
and PM2.5 stand for particles smaller than 10 and 2.5 microns,
respectively.
e: No data.
Emission Factors for Residual Fuel Oil (No. 4 and No. 6 Fuel Oil)
Pollutant No. 4 Fuel Oil Emission Factor2 (g/MJ) No. 6 Fuel Oil Emission Factor2 (g/MJ)
Carbon Dioxide (CO2) 76.77128 76.77128
Carbon Monoxide (CO) 1.53543E-02 1.53543E-02
Methane (CH4) 1.45865E-03 6.63304E-04
Nitrogen Oxides (NOx) 1.68897E-01 6.14170E-02
Nitrous Oxide (N2O) 3.37794E-04 3.37794E-04
Sulphur Dioxide (SO2)b 4.82124E-01 4.60628E-01
Particulate Matter (PM)c 2.56109E-02 2.14960E-02
Particulate Matter (PM10)c 1.58763E-02 1.58763E-02
Particulate Matter (PM2.5)c 5.89603E-03 5.89603E-03
Ammonia (NH3) 0d 0d
Volatile Organic Compounds (NMVOC) 3.47006E-03 1.04409E-03
Mercury (Hg) 3.47006E-06 3.47006E-06
Lead (Pb) 4.63699E-06 4.63699E-06
a: Based on data from Tables 1.3-1, 1.3-3, 1-3.8, 1.3-10 and 1.3-12 in EPA (1998b).
b: Based on 100% conversion of fuel sulfur to SO2. Assumes 1%
sulfur content. The SO2 emission factor in this table can be
converted to other natural gas sulfur contents by multiplying the
SO2 emission factor by percentage sulfur content.
c: PM is the sum of all particulate matter including PM10 and PM2.5. PM10
and PM2.5 stand for particles smaller than 10 and 2.5 microns, respectively.
d: No data.
Emission Factors for Distillates (No. 1 and No. 2 Fuel Oil)
Pollutant No. 1 Fuel Oil Emission Factora (g/MJ) No. 2 Fuel Oil Emission Factora (g/MJ)
Carbon Dioxide (CO2) 66.0233 68.47998
Carbon Monoxide (CO) 1.54E-002 1.54E-002
Methane (CH4) 6.63E-004 6.63E-004
Nitrogen Oxides (NOx) 6.14E-002 7.37E-002
Nitrous Oxide (N2O) 3.38E-004 3.38E-004
Sulphur Dioxide (SO2)b 4.36E-001 4.82E-001
Particulate Matter (PM)c 6.14E-003 6.14E-003
Particulate Matter (PM10)c 3.32E-003 3.32E-003
Particulate Matter (PM2.5)c 2.55E-003 2.55E-003
Ammonia (NH3) 0d 0d
Volatile Organic Compounds (NMVOC) 1.04E-003 1.04E-003
Mercury (Hg) 3.47E-006 3.47E-006
Lead (Pb) 4.64E-006 4.64E-006
a: Based on data from Tables 1.3-1, 1.3-3, 1-3.8, 1.3-10 and 1.3-12 in EPA (1998b).
b: Based on 100% conversion of fuel sulfur to SO2. Assumes 1% sulfur content.
The SO2 emission factor in this table can be converted to other natural
gas sulfur contents by multiplying the SO2 emission factor by percentage
sulfur content.
c: PM is the sum of all particulate matter including PM10 and PM2.5. PM10 and PM2.5
stand for particles smaller than 10 and 2.5 microns, respectively.
d: No data.
Emission Factors for Residential Oil Furnace
Pollutant Emission Factora (g/MJ)
Carbon Dioxide (CO2) 68.48237
Carbon Monoxide (CO) 1.53543E-02
Methane (CH4) 5.46612E-02
Nitrogen Oxides (NOx) 5.52753E-02
Nitrous Oxide (N2O) 1.53543E-04
Sulphur Dioxide (SO2)b 4.36061E-01
Particulate Matter (PM)c 2.14960E-02
Particulate Matter (PM10)c 1.58763E-02
Particulate Matter (PM2.5)c 5.89603E-03
Ammonia (NH3) 0d
Volatile Organic Compounds (NMVOC) 2.18952E-03
Mercury (Hg) 3.47006E-06
Lead (Pb) 4.63699E-06
a: Based on data from Tables 1.3-1, 1.3-3, 1.3-8, 1.3-10, and 1.3-12 in EPA (1998b).
b: Based on 100% conversion of fuel sulfur to SO2. Assumes 1% sulfur content.
The SO2 emission factor in this table can be converted to other natural
gas sulfur contents by multiplying the SO2 emission factor by percentage
sulfur content.
c: PM is the sum of all particulate matter including PM10 and PM2.5. PM10 and PM2.5
stand for particles smaller than 10 and 2.5 microns, respectively.
d: No data.
Emission Factors for LPG (butane and propane)
Pollutant LPG (butane) Emission Factora (g/MJ) Propane Emission Factora (g/MJ)
Carbon Dioxide (CO2) 66.0233 68.47998
Carbon Monoxide (CO) 1.54E-002 1.54E-002
Methane (CH4) 6.63E-004 6.63E-004
Nitrogen Oxides (NOx) 6.14E-002 7.37E-002
Nitrous Oxide (N2O) 3.38E-004 3.38E-004
Sulphur Dioxide (SO2)b 4.36E-001 4.82E-001
Particulate Matter (PM)c 6.14E-003 6.14E-003
Particulate Matter (PM10)c 3.32E-003 3.32E-003
Particulate Matter (PM2.5)c 2.55E-003 2.55E-003
Ammonia (NH ) 0d 0d
Volatile Organic Compounds (NMVOC) 1.04E-003 1.04E-003
Mercury (Hg) 3.47E-006 3.47E-006
Lead (Pb) 4.64E-006 4.64E-006
a: Based on data from Table # 1.5-1 in EPA (1996); Higher Heating value of 1.02
MMBtu/gal for butane and 0.915 MMBtu/gal for propane based on data in EPA (1996).
b: Based on 100% conversion of fuel sulfur to SO2. Assumes sulphur content
is 0.18 gr/100 ft3.The SO2 emission factor can be converted to other LPG
sulphur contents by multiplying the SO2 emission factor by the ratio of the
site-specific sulphur content gr/100 ft3 to 0.18 gr/100 ft3.
c: PM is the sum of all particulate matter including PM10 and PM2.5. PM10 and PM2.5
stand for particles smaller than 10 and 2.5 microns; respectively.
d: No data.
Emission Factors for Gasoline and Diesel
Pollutant Gasoline Emission Factora (g/MJ) Diesel Emission Factora (g/MJ)
Carbon Dioxide (C)2) 66.20808 70.50731
Carbon Monoxide (CO) 2.70E+001 4.08E-001
Methane (CH4) 0c 0c
Nitrogen Oxides (NOx) 7.01E-001 1.90E+000
Nitrous Oxide (N2O) 0c 0c
Sulphur Dioxide (SO2) 3.61E-002 1.25E-001
Particulate Matter (PM)a 0c 0c
Particulate Matter (PM10)a 4.30E-002 1.33E-001
Particulate Matter (PM2.5)a 0c 0c
Ammonia (NH3) 0c 0c
Volatile Organic Compounds (NMVOC) 9.03E-001 1.50E-001
Mercury (Hg) 0 0
Lead (Pb) 0 0
a: Based on data from Table # 3.3-1 in EPA (1996); Diesel higher heating value of
19300 Btu/lb and gasoline higher heating value of 20300 Btu/lb based on data in
EPA (1996).
b: PM is the sum of all particulate matter including PM10 and PM2.5. PM10 and PM2.5
stand for particles smaller than 10 and 2.5 microns; respectively.
c: No data.
Emission Factors for Coal
Pollutant Bituminous Emission Factora (g/MJ) Anthracite Emission Factorb (g/MJ) Lignite Emission Factorc (g/MJ)
Carbon Dioxide (CO2) 91.11052 99.26669 152.12646
Carbon Monoxide (CO) 8.27E-003 1.05E-002 8.27E-003
Methane (CH4) 6.61E-004 0f 0f
Nitrogen Oxides (NOx) 1.98E-001 3.15E-001 2.35E-001
Nitrous Oxide (N2O) 4.96E-004 0f 0f
Sulphur Dioxide (SO2)d 6.28E-001 6.82E-001 9.92E-001
Particulate Matter (PM)e 1.65E-001 1.75E-001 2.18E-001
Particulate Matter (PM10)e 3.80E-002 4.02E-002 7.61E-002
Particulate Matter (PM2.5)e 9.92E-003 1.05E-002 2.18E-002
Ammonia (NH3) 0f 0f 0f
Volatile Organic Compounds (NMVOC) 9.92E-004 2.15E-002 1.32E-003
Mercury (Hg) 6.94E-006 2.27E-006 2.74E-006
Lead (Pb) 1.37E-006 1.56E-004 1.39E-005
a: Based on data on pulverized coal from Tables 1.1-3, 1.1-6, 1.1-18, 1.1-19 in EPA (1998a),
Coal average higher heating value of 26.0 MMBtu/ton based on EPA (1998a).
b: Based on data on pulverized coal from Tables 1.2-1, 1.2-2, 1.2-3, 1.2-4, 1.2-7 in EPA (1996),
Coal average higher heating value of 24.6 MMBtu/ton based on EPA (1996).
c: Based on data on pulverized coal from Tables 1.7-1, 1.7-3, 1.7-7, 1.7-14 in EPA (1998b),
Coal average higher heating value of 13.0 MMBtu/ton based on EPA (1998b).
d: Based on 100% conversion of fuel sulfur to SO2. Assumes 1% sulfur content. The SO2
emission factor in this table can be converted to other natural gas sulfur contents by multiplying
the SO2 emission factor by percentage sulfur content.
e: PM is the sum of all particulate matter including PM10 and PM2.5. PM10 and PM2.5 are
particles smaller than 10 and 2.5 microns, respectively. Expressed in terms of coal ash content,
assumes 1% ash content. Multiply weight % ash content of coal (as fired) by the value.
f: No data.

Off-Site Electricity Generation Emissions[LINK]

While estimating emissions from on-site fossil fuel combustion can be fairly straight-forward, emissions from off-site electricity is more challenging. How the electricity is generated, i.e., from gas, oil, coal, nuclear, renewable sources (wind, PV) or hydroelectric, and the mix of generation determines the resulting level of emissions. While data are available at utility and even power plant level (from the sources cited), data are shown here for United States national- and state-level average emissions from electricity generation. Table 9 provides average greenhouse gas and precursors and criteria pollutant emissions factors for the entire United States from electricity generation. Table 10 provides average electricity emissions factors by state, for greenhouse gas and precursors, and Table 11 for criteria pollutant emission factors. These two tables also include a ratio of heat input to electric output (efficiency of electricity generation) including distribution and transmission losses to allow calculation of source energy.

As mentioned in the introduction to this section, EnergyPlus also calculates water consumed through evaporation in thermo-electric and hydro-electric generation. Torcellini, Long, and Judkoff (2004) provide data on average water consumption by generator type by state. These data are summarized in units suitable for EnergyPlus in Table 9, for national and state average water consumption for thermal-electric, hydro-electric, and Table 10 for weighted total electricity generation.

United States National Average Emission Factors for Electricity Generation
Efficiency Ratio (J/J)
Ratio of Heat Input to Electricity Outputa 2.253
Pollutant Emission Factor (g/MJ)
Carbon Dioxide (CO2)b 168.333168
Carbon Monoxide (CO)c 4.20616E-02
Methane (CH4)b 1.39858E-03
Nitrogen Oxides (NOx)a 4.10753E-01
Nitrous Oxide (N2O)b 2.41916E-03
Sulphur Dioxide (SO2)a 8.65731E-01
Particulate Matter (PM)c,d 2.95827E-02
Particulate Matter (PM10)c,d 1.80450E-02
Particulate Matter (PM2.5)c,d 1.15377E-02
Ammonia (NH3)c 1.10837E-03
Volatile Organic Compounds (NMVOC)a 3.72332E-03
Mercury (Hg)c 3.36414E-06
Lead (Pb) 0e
a: Data based on 1999 data from *eGRID* version 2.01 (EPA 2003a).
b: Data based on 1998-2000 average data in DOE (2002).
c: Data based on tier emissions report for criteria air pollutants in EPA (2003b).
d: PM is the sum of all particulate matter including PM10 and PM2.5. PM10 and
PM2.5 stand for particles smaller than 10 and 2.5 microns, respectively.
e: No data.
U. S. State Average Greenhouse Gas Emission Factors for Electricity Generation, in g/MJ
Ratio of Heat Input to Electric Output Carbon Dioxide (CO2)b Carbon Monoxide (CO)c Methane (CH4)b Nitrogen Oxides (NOx)a Nitrous Oxide (N2O)b Sulphur Dioxide (SO2)a
Alabama 2.23 165.30922 1.45E+003 1.73E-003 4.02E-001 2.81E-003 1.14E+000
Alaska 2.734 173.87708 3.72E+002 8.57E-004 7.29E-001 1.12E-003 2.38E-001
Arizona 1.694 132.29777 8.27E+002 8.57E-004 2.74E-001 1.94E-003 2.28E-001
Arkansas 2.207 162.03327 6.42E+002 1.57E-003 2.87E-001 2.56E-003 4.25E-001
California 1.422 76.35472 2.91E+003 8.44E-004 6.56E-002 4.66E-004 3.05E-002
Colorado 3.101 242.67192 1.51E+003 1.60E-003 4.74E-001 3.64E-003 5.84E-001
Connecticut 1.72 118.69 3.21E+002 2.19E-003 1.82E-001 1.51E-003 3.79E-001
Delaware 2.736 230.57612 1.31E+002 1.55E-003 4.13E-001 2.86E-003 1.11E+000
District of Columbia 4.844 172.1131 8.95E+000 1.49E-003 7.30E-001 2.60E-003 1.62E+000
Florida 2.694 175.64105 6.13E+003 1.89E-003 4.73E-001 2.27E-003 1.01E+000
Georgia 2.119 172.1131 1.06E+003 1.63E-003 4.00E-001 2.85E-003 1.12E+000
Hawaii 2.95 209.40848 1.18E+002 2.70E-003 7.28E-001 2.31E-003 5.44E-001
Idaho 0.213 3.52794 0 1.01E-003 1.07E-002 4.16E-004 1.06E-002
Illinois 1.694 146.66153 1.85E+003 1.03E-003 4.42E-001 2.27E-003 1.12E+000
Indiana 3.281 261.5716 2.14E+003 1.80E-003 7.30E-001 4.07E-003 1.89E+000
Iowa 3.033 237.12801 7.58E+002 1.74E-003 5.61E-001 3.75E-003 1.05E+000
Kansas 2.826 212.18043 8.66E+002 1.41E-003 5.59E-001 3.20E-003 7.07E-001
Kentucky 3.234 253.00374 1.51E+003 1.76E-003 8.41E-001 4.04E-003 1.79E+000
Lousiana 2.624 148.4255 1.68E+004 1.18E-003 3.42E-001 1.41E-003 5.06E-001
Maine 2.191 107.35019 4.93E+002 7.12E-003 1.80E-001 3.40E-003 4.04E-001
Maryland 2.277 172.1131 4.90E+002 1.49E-003 5.38E-001 2.60E-003 1.39E+000
Massachusetts 2.729 161.02529 7.89E+002 2.19E-003 2.89E-001 2.00E-003 8.01E-001
Michigan 2.616 199.07665 1.69E+003 1.84E-003 4.92E-001 3.15E-003 9.77E-001
Minnesota 2.331 163.04126 6.96E+002 1.66E-003 5.02E-001 2.08E-003 5.07E-001
Mississippi 2.404 231.8361 2.18E+003 1.59E-003 4.67E-001 3.63E-003 8.98E-001
Missouri 2.857 192.02077 1.30E+003 1.98E-003 6.42E-001 3.11E-003 9.07E-001
Montana 1.936 180.68096 4.13E+002 1.36E-003 3.58E-001 2.86E-003 2.01E-001
Nebraska 2.195 176.39703 4.68E+002 1.20E-003 3.94E-001 2.76E-003 5.29E-001
Nevada 2.615 191.26478 3.82E+002 1.13E-003 4.02E-001 2.46E-003 4.03E-001
New Hampshire 1.394 85.93055 2.64E+002 2.17E-003 2.03E-001 1.78E-003 8.71E-001
New Jersey 1.451 88.9545 2.27E+003 9.70E-004 1.77E-001 9.95E-004 2.31E-001
New Mexico 3.307 254.26372 8.56E+002 1.65E-003 6.58E-001 3.73E-003 5.70E-001
New York 1.808 108.10618 1.94E+003 1.02E-003 1.69E-001 1.12E-003 4.68E-001
North Carolina 1.969 156.48937 1.10E+003 1.32E-003 4.69E-001 2.56E-003 1.00E+000
North Dakota 3.244 282.48725 9.01E+002 1.85E-003 6.45E-001 4.27E-003 1.53E+000
Ohio 2.736 226.79619 1.59E+003 1.64E-003 7.68E-001 3.63E-003 2.34E+000
Oklahoma 3.024 216.96835 1.67E+003 1.39E-003 5.11E-001 2.81E-003 5.11E-001
Oregon 0.526 35.5314 1.87E+002 4.16E-004 5.27E-002 4.28E-004 7.51E-002
Pennsylvania 1.827 159.26132 1.86E+003 1.35E-003 3.29E-001 2.56E-003 1.26E+000
Rhode Island 2.561 132.54977 1.68E+002 8.57E-004 6.21E-002 5.92E-004 4.54E-003
South Carolina 1.3 105.08223 8.39E+002 1.15E-003 2.54E-001 1.83E-003 6.05E-001
South Dakota 1.192 100.54631 9.79E+001 6.68E-004 5.45E-001 1.52E-003 5.81E-001
Tennessee 1.902 163.29325 9.10E+002 1.32E-003 5.10E-001 2.67E-003 1.18E+000
Texas 2.749 184.4609 9.63E+003 9.70E-004 3.28E-001 1.84E-003 4.91E-001
Utah 3.095 243.6799 5.13E+002 1.69E-003 5.27E-001 3.88E-003 2.13E-001
Vermont 0.306 3.52794 1.38E+002 1.21E-003 1.94E-002 4.91E-004 2.14E-003
Virginia 1.924 146.66153 9.13E+002 1.73E-003 3.65E-001 2.42E-003 7.87E-001
Washington 0.414 30.99548 4.30E+002 4.66E-004 5.30E-002 5.04E-004 1.90E-001
West Virginia 2.917 248.97181 1.28E+003 1.73E-003 7.78E-001 3.98E-003 1.87E+000
Wisconsin 2.68 206.88852 1.00E+003 1.74E-003 4.97E-001 3.28E-003 9.25E-001
Wyoming 3.534 270.39145 9.01E+002 1.85E-003 5.59E-001 4.26E-003 5.79E-001
a: Data based on 1999 data from eGRID version 2.01 (EPA 2003a).
b: Data based on 1998-2000 average data in DOE (2002).
c: Data based on tier emissions report for criteria air pollutants in EPA (2003b).
U. S. State Average Criteria Pollutant Emission Factors for Electricity Generation, in g/MJ
Particulate Matter (PM)c,d Particulate Matter (PM10)c,d Particulate Matter (PM2.5)c,d Ammonia (NH3)c Volatile Organic Compounds (NMVOC)a Mercury (Hg)c Lead (Pb)e
Alabama 7.91048E-03 7.86328E-03 4.72023E-05 3.55049E-05 4.66784E-03 5.14071E-06 0
Alaska 8.96502E-03 8.85977E-03 1.05247E-04 6.51454E-06 2.82297E-03 3.27594E-07 0
Arizona 1.70555E-02 1.69322E-02 1.23202E-04 1.80226E-04 2.27385E-03 1.88997E-06 0
Arkansas 9.27803E-03 9.19307E-03 8.49561E-05 4.59383E-04 3.46429E-03 2.73415E-06 0
California 7.16813E-03 7.07819E-03 8.99402E-05 4.02651E-03 2.62453E-03 1.38598E-07 0
Colorado 7.29822E-03 7.23699E-03 6.12291E-05 9.56430E-05 4.36770E-03 1.62537E-06 0
Connecticut 1.22734E-02 1.21694E-02 1.04033E-04 2.22944E-03 3.93896E-03 1.18438E-06 0
Delaware 1.39283E-02 1.38287E-02 9.96131E-05 1.54469E-03 4.74441E-03 3.62874E-06 0
District of Columbia 2.88269E-02 2.84861E-02 3.40760E-04 8.76496E-03 2.30080E-02 0 0
Florida 4.33040E-02 4.29055E-02 3.98460E-04 1.58386E-03 3.39110E-03 1.71357E-06 0
Georgia 2.05237E-02 2.03865E-02 1.37175E-04 7.51637E-05 2.16686E-03 3.20035E-06 0
Hawaii 5.97339E-03 5.90409E-03 6.92999E-05 3.55697E-03 7.01715E-03 1.77657E-06 0
Idaho 0 0 0 0 0 0 0
Illinois 1.53276E-01 1.52156E-01 1.12047E-03 5.93583E-03 2.77818E-02 4.62412E-06 0
Indiana 2.18862E-02 2.17008E-02 1.85453E-04 5.75861E-04 4.87283E-03 4.86352E-06 0
Iowa 2.34564E-02 2.32698E-02 1.86674E-04 9.09228E-05 4.78644E-03 6.19910E-06 0
Kansas 2.41783E-02 2.39535E-02 2.24799E-04 4.19292E-04 5.39089E-03 4.93912E-06 0
Kentucky 1.69397E-02 1.68139E-02 1.25825E-04 4.35029E-05 3.80922E-03 4.71232E-06 0
Lousiana 1.79917E-02 1.77843E-02 2.07304E-04 1.66720E-03 1.02357E-02 1.41118E-06 0
Maine 3.36399E-03 3.34131E-03 2.26813E-05 1.55132E-03 9.62614E-03 4.53592E-07 0
Maryland 2.13382E-02 2.12038E-02 1.34391E-04 7.21581E-04 2.78881E-03 4.88872E-06 0
Mass-achusetts 8.85244E-03 8.76617E-03 8.62772E-05 1.70282E-03 3.49171E-03 1.88997E-06 0
Michigan 9.08755E-03 9.00520E-03 8.23449E-05 2.22140E-04 2.79017E-03 3.67914E-06 0
Minnesota 4.04781E-02 4.01455E-02 3.32617E-04 6.74889E-05 4.13240E-03 3.30114E-06 0
Mississippi 5.44446E-02 5.37910E-02 6.53601E-04 4.06289E-02 1.54329E-02 2.45696E-06 0
Missouri 1.25537E-02 1.24368E-02 1.16929E-04 6.48638E-05 4.98085E-03 4.67452E-06 0
Montana 3.67504E-03 3.64126E-03 3.37798E-05 4.01020E-05 3.14400E-03 3.77994E-06 0
Nebraska 1.33751E-02 1.32829E-02 9.21636E-05 6.90470E-05 5.23031E-03 3.59094E-06 0
Nevada 2.09146E-02 2.07657E-02 1.48886E-04 3.79659E-04 3.33440E-03 1.36078E-06 0
New Hampshire 3.09503E-02 3.06487E-02 3.01568E-04 7.16019E-04 2.45937E-03 3.40194E-07 0
New Jersey 3.45712E-02 3.41460E-02 4.25200E-04 1.24216E-04 1.52830E-02 1.28518E-06 0
New Mexico 5.20754E-02 5.16748E-02 4.00653E-04 4.41665E-04 5.12951E-03 8.41666E-06 0
New York 5.35802E-03 5.31301E-03 4.50068E-05 2.22325E-03 4.26008E-03 1.33558E-06 0
North Carolina 3.40955E-02 3.38325E-02 2.62976E-04 3.00504E-05 1.73434E-03 3.33894E-06 0
North Dakota 5.17162E-02 5.13979E-02 3.18277E-04 6.41672E-05 6.88995E-03 8.71905E-06 0
Ohio 1.38722E-02 1.37957E-02 7.64501E-05 1.11541E-04 2.59201E-03 6.24949E-06 0
Oklahoma 1.83971E-02 1.82479E-02 1.49160E-04 9.73713E-04 4.68484E-03 3.88073E-06 0
Oregon 3.47911E-03 3.46199E-03 1.71186E-05 4.43277E-06 5.31933E-04 3.77994E-07 0
Pennsylvania 2.21604E-02 2.20060E-02 1.54356E-04 1.47657E-04 1.51542E-03 6.56449E-06 0
Rhode Island 1.03973E-03 1.02744E-03 1.22906E-05 0 2.25247E-03 0 0
South Carolina 2.45530E-02 2.43803E-02 1.72632E-04 2.51344E-05 1.16735E-03 1.54977E-06 0
South Dakota 4.67825E-03 4.63562E-03 4.26239E-05 8.82976E-05 4.63562E-03 1.22218E-06 0
Tennessee 2.51650E-02 2.48944E-02 2.70575E-04 2.70034E-05 2.88396E-03 2.98615E-06 0
Texas 1.73147E-02 1.71765E-02 1.38283E-04 1.26310E-03 4.32150E-03 3.52794E-06 0
Utah 1.47314E-02 1.46364E-02 9.50155E-05 9.59315E-05 2.48737E-03 9.70184E-07 0
Vermont 1.16247E-03 1.14873E-03 1.37415E-05 1.80704E-05 2.12073E-03 0 0
Virginia 1.22315E-02 1.21362E-02 9.53635E-05 2.93259E-04 2.50975E-03 2.21756E-06 0
Washington 5.37627E-04 5.32210E-04 5.41708E-06 6.46409E-06 6.87348E-04 5.92190E-07 0
West Virginia 2.39677E-03 2.38177E-03 1.50018E-05 4.25792E-05 3.09497E-03 6.55189E-06 0
Wisconsin 7.34187E-03 7.28252E-03 5.93472E-05 6.45613E-05 4.61829E-03 4.83832E-06 0
Wyoming 5.08215E-02 5.06042E-02 2.17349E-04 5.19787E-05 4.78782E-03 5.27931E-06 0
a: Data based on 1999 data from eGRID version 2.01 (EPA 2003a).
b: Data based on 1998-2000 average data in DOE (2002).
c: Data based on tier emissions report for criteria air pollutants in EPA (2003b).
d: PM is the sum of all particulate matter including PM10 and PM2.5. PM10 and PM2.5 stand
for particles smaller than 10 and 2.5 microns, respectively.
e: No data.
United States National Average Water Consumption Factorsa
ThermoElectric Generation HydroElectric Generation Weighted Total Water Consumption
L/MJ Percent of Total Generation L/MJ Percent of Total Generation L/MJ
United States 0.4960 89.4% 19.2095 8.6% 2.1007
a: Based on data from Torcellini, Long, and Judkoff (2004).
U.S. State Average Water Consumption Factors for Electricity Generationsupa
ThermoElectric Generation HydroElectric Generation Weighted Total Water Consumption
State L/MJ Percent of Total Generation L/MJ Percent of Total Generation L/MJ
Alabama 0.1503 89.80% 38.9053 6.4% 2.6274
Alaska 0.3295 86.20% 13.8% 0.2839
Arizona 0.3313 88.30% 68.1928 11.7% 8.2533
Arkansas 0.3 89.50% 5.7% 0.2684
California 0.0511 74.10% 21.943 22.0% 4.8739
Colorado 0.5368 96.00% 18.8333 4.0% 1.26
Connecticut 0.086 90.80% 1.5% 0.0781
Delaware 0.0132 99.90% 0.0% 0.0132
District of Columbia 1.6959 100.00% 0.0% 1.6959
Florida 0.1506 95.70% 0.1% 0.1441
Georgia 0.6267 93.60% 49.8599 2.3% 1.7339
Hawaii 0.044 92.40% 1.1% 0.0407
Idaho 0 2.70% 8.9528 92.2% 8.2501
Illinois 1.1093 99.40% 0.1% 1.1032
Indiana 0.435 99.60% 0.3% 0.4331
Iowa 0.1229 97.30% 2.5% 0.1196
Kansas 0.6099 100.00% 0.0% 0.6098
Kentucky 1.1521 97.20% 162.2884 2.8% 5.599
Louisiana 1.6411 94.20% 0.9% 1.5461
Maine 0.3049 40.40% 28.7% 0.1231
Maryland 0.0343 95.30% 7.0617 2.7% 0.2259
Massachusetts 0 92.40% 2.4% 0
Michigan 0.5221 95.80% 1.4% 0.4999
Minnesota 0.4657 93.40% 2.4% 0.4351
Mississippi 0.4145 94.40% 0.0% 0.3912
Missouri 0.3213 97.40% 2.5% 0.313
Montana 1.0051 55.80% 38.6619 44.1% 17.5997
Nebraska 0.202 94.50% 2.2888 5.5% 0.3165
Nevada 0.5936 90.60% 77.1023 9.2% 7.626
New Hampshire 0.1231 83.90% 8.6% 0.1033
New Jersey 0.0747 97.60% 0.0% 0.0729
New Mexico 0.6609 99.30% 71.507 0.7% 1.1886
New York 0.8951 81.30% 5.8535 16.7% 1.704
North Carolina 0.2445 95.50% 10.9089 3.1% 0.5751
North Dakota 0.3809 91.70% 60.773 8.3% 5.3968
Ohio 0.9972 99.10% 0.3% 0.9884
Oklahoma 0.5378 93.70% 144.0133 5.8% 8.8254
Oregon 0.8633 18.40% 4.6351 80.7% 3.899
Pennsylvania 0.57 97.60% 1.0% 0.5563
Rhode Island 0 98.20% 0.1% 0
South Carolina 0.2754 97.20% 1.9% 0.2677
South Dakota 0.0143 36.70% 120.7558 63.2% 76.3811
Tennessee 0.0026 90.80% 45.5853 8.3% 3.7833
Texas 0.4595 99.00% 0.3% 0.455
Utah 0.5959 96.60% 77.115 3.4% 3.209
Vermont 0.3642 71.50% 20.9% 0.2605
Virginia 0.0693 94.90% 0.9% 0.0657
Washington 0.3013 15.70% 3.3506 83.2% 2.8344
West Virginia 0.618 99.00% 1.0% 0.6119
Wisconsin 0.5199 93.60% 3.3% 0.4867
Wyoming 0.519 97.10% 144.0177 2.7% 4.3654
a: Based on data from Torcellini, Long, and Judkoff (2004).

References[LINK]

Crawley, Drury B. 2003. “Impact of Climate Change on Buildings,” in Proceedings of the CIBSE/ASHRAE International Conference 2003, September 2003, Edinburgh, Scotland. London, England: CIBSE.

Intergovernmental Panel on Climate Change. 2001. Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press.

Intergovernmental Panel on Climate Change. 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Paris, France: IPCC/OECD/IEA.

Intergovernmental Panel on Climate Change. 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton, L.G. Meira Filho, B. Lim, K. Treanton, I. Mamaty, Y. Bonduki, D.J. Griggs and B.A. Callender (editors). Paris, France: IPCC/OECD/IEA.

International Energy Agency. 2003. CO2 Emissions from Fuel Combustion 1971-2001 (2003) – 2003 Edition. Paris, France: IEA.

Liesen, Richard J. 1997. Atmospheric Pollution Prediction in a Building Energy Simulation Program, April 1997, BLAST Support Office, Department of Mechanical Engineering. Champaign, Illinois: University of Illinois.

Stroot, Peter J., Robert J. Nemeth, & Donald F. Fournier. 1996. Pollution Reduction Through Energy Conservation, REEP Model. Champaign, Illinois: U S Army Construction Engineering Research Laboratory.

Torcellini Paul A, Nicholas Long, and Ronald D. Judkoff. 2004. “Consumptive Water Use for U.S. Power Production,” in ASHRAE Transactions, Volume 110, Part 1. Atlanta, Georgia: ASHRAE.

United Nations Environment Programme. 2002. Climate Change Information Kit. Châtelaine, Switzerland: UNEP.

United Nations Framework Convention on Climate Change. 1997. Kyoto Protocol to the United Nations Framework Convention on Climate Change. Bonn, Germany: UNFCCC.

U.S. Department of Energy. 2004. Monthly Energy Review. Washington, DC: Energy Information Administration, U S Department of Energy.

U.S. Department of Energy. 2002. Updated State-level Greenhouse Gas Emission Coefficients for Electricity Generation 1998-2000. April 2002, Energy Information Administration, Office of Integrated Analysis and Forecasting, Energy Information Administration. Washington, DC: U.S. Department of Energy.

U.S. Environmental Protection Agency. 2003a. eGRID Emissions and Generation Resource Integrated Database, May 2003, Washington, DC: U.S. Environmental Protection Agency.

U.S. Environmental Protection Agency. 2003b. AirData, Tier Emissions Report - Criteria Air Pollutants, 1999 data, May 2003. Washington, DC: U.S. Environmental Protection Agency.

U.S. Environmental Protection Agency. 1998a. Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Chapter 1 External Combustion Sources, Supplement D, July 1998. Research Triangle Park, North Carolina: U. S. Environmental Protection Agency.

U.S. Environmental Protection Agency. 1998b. Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Chapter 1 External Combustion Sources, Supplement E, September 1998. Research Triangle Park, North Carolina: U. S. Environmental Protection Agency.

U.S. Environmental Protection Agency. 1996. Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Chapter 1 External Combustion Sources, Supplement B, October 1996. Research Triangle Park, North Carolina: U. S. Environmental Protection Agency.